
Journal of Sound and <ibration (2001) 242(2), 362}368
doi:10.1006/jsvi.2000.3329, available online at http://www.idealibrary.com on
RESPONSE OF A DUFFING OSCILLATOR TO COMBINED
DETERMINISTIC HARMONIC AND RANDOM EXCITATION

R. HAIWU

Department of Mathematics, Foshan ;niversity, Foshan City, Guangdong 528000,
People1s Republic of China. E-mail: zhangyy@fosu.edu.cn

X. WEI

Northwestern Polytechnical ;niversity, Xi1an 710072, People1s Republic of China

M. GUANG

Foshan ;niversity, Foshan City, Guangdong 528000, People1s Republic of China

AND

F. TONG

Northwestern Polytechnical ;niversity, Xi1an 710072, People1s Republic of China

(Received 23 August 2000)

The response of Du$ng oscillator to combined deterministic harmonic and random
excitation is investigated. The method of harmonic balance and the method of stochastic
averaging are used to determine the response of the system. Theoretical analyses and
numerical simulations show that when the intensity of the random excitation increases, the
non-trivial steady state solution may change from a limit cycle to a di!used limit cycle.
Under some conditions, the system may have two steady state solutions and jumps may
exist.
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1. INTRODUCTION

The study of the response of non-linear systems to narrow-band random excitation is of
considerable importance. In the theory of non-linear random vibration, most results
obtained so far are attributed to the response of non-linear oscillators to wideband random
excitation. In comparison, results on the e!ect of narrowband excitation on non-linear
oscillators are quite limited. Furthermore, some results in this area are disputable.

A typical example in this area is the response of a Du$ng oscillator with a hardening
spring to narrowband random excitation. It is well known from the theory of non-linear
oscillation that if an oscillator with hardening non-linear sti!ness is subjected to sinusoidal
excitation, the response may exhibit the phenomenon of sharp jumps in amplitude [1]. The
jump phenomenon may also occur if an oscillator with hardening non-linear sti!ness is
subjected to narrowband random excitation. This phenomenon was "rst observed
experimentally and studied theoretically by Lyon et al. [2]. Later, it was further examined
by a number of authors [3}10]. The main conclusion drawn from these studies is that under
certain value areas of the parameters of the oscillator and excitation, the variance of the
stationary displacement response of the Du$ng oscillator to narrowband excitation is
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triple valued: among them only two are stable and realizable and the jump is the switch
between these two stable branches.

However, using digital simulation method, Zhu et al. [11] pointed out that the jump of
the Du$ng oscillator under narrowband random excitation is essentially a transition of the
response, from one more probable motion to another vice versa. In the case when jumps
occur, all the statistics, including the variance of the displacement, of the stationary
response are unique and independent of initial conditions. So, until now, the conclusion that
there are multiple-valued stationary displacement responses of the Du$ng oscillator under
narrowband random excitation is disputable.

In this paper, the response of the Du$ng oscillator to a combined deterministic harmonic
and random excitation is investigated. The method of harmonic balance and the method of
stochastic averaging are used to determine the response of the system. Theoretical analyses
and numerical simulations show that when the intensity of the random excitation increases,
the steady state solution may change form a limit cycle to a di!used limit cycle. Under some
conditions the system may have two steady state solutions and jumps may exist.

2. FORMULATION OF PROBLEM

Consider the Du$ng oscillation under a combined deterministic and random excitation
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u#e2u3"h cos Xt#em (t), (1)

where dots indicate di!erentiation with respect to the time t, e@1 is a small parameter,
b and u

0
are sti!ness coe$cient and natural frequency, respectively, h, X'0 are constants

and represent the amplitude and frequency of the deterministic harmonic excitations, m (t) is
a zero mean wideband random process with power spectrum S (u). However,
h cos Xt#em(t) can also be taken as a narrowband random process. We "rst determine the
response of system (1) when m (t)"0. In this case, equation (1) can be written as
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Periodic solution of equation (2) can be solved by the method of harmonic balance [1]. Let
the "rst order periodic solution of equation (2) be
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Substituting equation (3) into equation (2), neglecting the high order harmonic term
cos[3(Xt#c)], and equating coe$cients of cos Xt and sin Xt, one obtains
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Equations (4) give the following frequency response formula of system (2):
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Applying the Floquet theory [1], one obtains the following necessary and su$cient
condition of the stability of the periodic solution of equation (2):
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Condition (6) shows that not all the branches given by equation (5) are stable. If there are
three branches, among them only the largest and smallest one are stable and realizable and
the jump is the switch between these two stable branches.

Next, we determine the e!ect of the noise, i.e., em(t)O0, on the deterministic steady state
motion. To this end, we let
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where > is a perturbation term. Substituting equation (7) into equation (1) and neglecting
the non-linear terms, one obtains the following linearization equation:
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Equation (8) can be solved by the method of stochastic averaging [12]. By introducing the
following transformation:
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equation (8) can be written as the following standard form:
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Taking stochastic averaging on equations (10), one obtains the following Ito equations:
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where=
1
(t) and =

2
(t) are independent standard Wiener processes.

It is clear that A(t) is a Markov process, its steady state probability density function p (a) is
governed by the following FPK equation:
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The solution of equation (12) is
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The "rst and second moments of A(t) are
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Combining equations (7), (9) and (14), one obtains
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In some parameter areas, the amplitude a
0

of periodic solution given by equation (5) has
three branches, among them only the largest and smallest one are stable and realizable.
However, if S (u

0
) is small enough, the noise em (t) will not change the stability of stable

branches, hence, there will be three stationary displacement variances given by equation (15)
and among them only the largest and smallest ones are stable and realizable.

3. NUMERICAL SIMULATION

In this paper, the power spectrum of m (t) is taken as
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For numerical simulation it is more convenient to use the pseudorandom signal given by
[12]
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where u
k
's are independent and uniformly distributed in (0,2n].

In the numerical simulation, the parameters in system (1) and (17) are chosen as follows:

b"u
0
"h"1, e2"0)1, N"1000.

The governing equation (1) is numerically integrated by the fourth order Runge}Kutta
algorithm, and the numerical results are shown in Figures 1 to 4. When m(t)"0, the
Figure 1. Frequency response of system (1):**, stable solution; } } }, unstable solution;
333

numerical solution.



Figure 2. Numerical results of equation (1): u(0)"!4)0, uR (0)"!5)5: (a) time history of u(t); (b) phase plot.

Figure 3. Numerical results of equation (1): u(0)"!1)0, uR (0)"!1)5: (a) time history of u(t); (b) phase plot.
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variations of the steady state response with X are shown in Figure 1, for comparison the
theoretical results given by equation (5) are also shown in Figure 1.

Next, we determine the e!ect of the noise term m (t) on the primary response. When
X"1)4, S (u

0
)"0)0025, for di!erent initial values, the numerical results of equation (1) are

shown in Figures 2 and 3.
Figures 2 and 3 show that when m (t) is small enough, in some parameter area of X, for

di!erent initial values the stationary displacement variances of the response of system (1)
may be di!erent. The random noise m (t) will change the steady state response of system (1)
from a limit cycle to a di!used limit cycle. Further numerical simulation shows that when
the intensity of the random excitation increases, the width of the di!used limit cycle will
increase.

When S(u
0
)"0)0025, the variations of the steady state response with X are shown in

Figure 4, for comparison the theoretical results given by equation (15) are also shown in
Figure 4.

Further numerical simulation shows that when m(t) is small enough, the multi-valuedness
is responsible for a jump phenomenon. From equations (5), (6) and Figure 4, it can be shown
that X

1
"1)34, X

2
"1)80 are bifurcation points of the steady state response of system (1).

When X(X
1

or X'X
2
, the steady state response of system (1) is unique; when

X
1
(X(X

2
, the response has three branches among them only the highest and lowest

ones are stable. Jump may occur at the points X"X
1
, X

2
.



Figure 4. Frequency response of system (1):**, stable solution; } } } , unstable solution;
333

numerical solution.
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4. CONCLUSION AND DISCUSSION

For the "rst time, the method of harmonic balance is used to analyze the response of
a non-linear system under deterministic and random excitation. The method of stochastic
averaging is used to analyze the e!ect of the random noise on the response of the Du$ng
oscillator. So far, exact solutions of non-linear system under random excitation are only
available for a very limited number of problems. Thus, approximate methods have been
developed and used to treat many of these problems. These include the method of
equivalent or stochastic linearization, perturbation methods, stochastic averaging and
series expansions, etc. The approximate methods in the determining the system can be
extended to random system. For example, in recent year, Rajan and Davies [7], Nayfeh and
Serhan [13] have extended the method of multiple scales to the analysis of non-linear
systems under random external excitations, and the authors [14] extended this method to
the analysis of non-linear systems under random parameter excitation. In this paper, for the
"rst time we extend the method of harmonic balance to the analysis of the response of
Du$ng oscillator under combined deterministic harmonic and random excitation.

Theoretical analyses and numerical simulations show that when m(t) is small enough, in
some parameter area of X, for di!erent initial values the stationary displacement variances of
the response of system (1) may be di!erent. The random noise m(t) will change the steady state
response of system (1) from a limit cycle to a di!used limit cycle. When the intensity of the
random excitation increases, the width of the di!used limit cycle will increase. When m(t)
become large enough, the lowest branches of the stationary displacement response will lose
their stability and the stationary response will be unique. These conclusions are in accordance
with the physical instinct. When m(t) is small enough, the deterministic harmonic term
h cos Xt will play a decisive role in the response of system (1), so phenomenon of
multiple-valued steady state response and jump can be observed in some parameter areas.

There are many models to describe the narrowband random excitation. The character of the
narrowband random excitation in di!erent models may be di!erent, while some of them may be
similar to the deterministic harmonic excitation. So it is possible that the steady state response
of a Du$ng oscillator under such kind of narrowband random will be multiple valued.
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